Tuesday, April 28, 2015

Lab 5 - Sensors and actuator --> Alarm system

For this lab the task was to create a sunset sensor that with the use of a photocell you could light some LEDs depending on the time of day, or the light acting on the cell.

We have taking the idea a step forward by creating an alarm system that utilizes two sensors, the photocell and the ultrasonic range finder. Both sensors are connect to an Arduino UNO that is configured to send bytes to another Arduino UNO. In order to achieve the stream of bytes the Xbee on the Arduino has to be configured to Coordinator API. 

The scenario for this project is to keep a valuable object safe from others in a secret place. We therefore set the object inside a closet where the photocell will be calibrated to the light once the door is closed thus the inside, where the sensor is located with the object, is completely dark. A change of the state of the sensor will happen once the door is opened. 

Since an intruder can open the door with the outside also dark the sensor will not set off the alarm because there is no change in the light. Due to this issue, the ultrasound sensor is used to determine a change on the position of the object, that we want to keep away of the hand of the enemy. If any of the sensors notice a change the alarm (buzzer) will go off and a tune will play.

The material used:

  • (2) Computers
  • (2) Arduino UNO
  • (2) XBee explorer (and at least one USB-to-mini-USB cable)
  • (2) XBee
  • (2) Breadboards
  • (1) Green LED
  • (1) Piezo speaker (buzzer)
  • (1) Photocell
  • (1) Ultrasonic Range Finder
  • (1) Button
  • (2) 10kΩ


In order to simplefy it we start with one part of the whole system, the one with the sensors. The following sketch shows all the connections and materials used.
The finnised set up looks like this with the choosen object to be kept save:


The code for the Arduino on this set-up with the sensors:

#define lightPin 0  //define a pin for Photo resistor
#define trigPin 12 //define a pin for the US trigger
#define echoPin 11 //define a pin for the US echo (our input)
//int audioPin = 12;   //define a pin for LED
int LDRreading, outputValue, LDRMax = 0, LDRMin = 1023;
String incomingBytes;
boolean Running = false, calibrated = false;
//variables needed for reading distance from US sensor
long duration, distance, durationMax = 0, durationMin = 100000;

void setup()
{
  Serial.begin(9600);  //Begin serial communcation
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);

}

void loop()
{
  while (Serial.available() > 0) {
    delay(10); //small delay to allow input buffer to fill
    char c = Serial.read(); //gets one byte from serial buffer
    incomingBytes += c; //create the word we're receiving
  }
  //Serial.println(incomingBytes);
  if (incomingBytes.startsWith("stop"))
    Running = false;
  if (incomingBytes.startsWith("start")) {
    Running = true;
    //if (!calibrated)
    calibrate();
  }
  incomingBytes = "";


  if (Running == true) {

    LDRreading = analogRead(lightPin); //read the value of the photoresistor
    //    Serial.print("LED reading is: ");
    //    Serial.println(LDRreading); //Write the value of the photoresistor to the serial monitor.

    //start measuring distance
    digitalWrite(trigPin, LOW);  //toggle the pin OFF so we're sure we'll have a clean reading
    delayMicroseconds(2); //short delay
    digitalWrite(trigPin, HIGH); //10 microseconds ON time, that's all the Ultrasound sensor needs
    delayMicroseconds(10);
    digitalWrite(trigPin, LOW);
    duration = pulseIn(echoPin, HIGH); //we read the duration of the sound wave bouncing back from the object
    distance = (duration / 2) / 29.1; //we divide it by 2 as the sound wave needs to get to the object and back and again by 29.1 to get centimeters
    //    Serial.print("Duration is ");
    //    Serial.println(duration);
    //    Serial.print("Distance is ");
    //    Serial.print(distance);
    //    Serial.println(" cm");

    if (duration < durationMin - 30 || duration > durationMax + 30 || LDRreading < LDRMin - 30 || LDRreading > LDRMax + 30) {
      //     Serial.print("ALARM");
      Serial.print('a'); // a from alarm

      Running = false;
    }
    delay(100); //short delay for faster response to light.
  }
}
void calibrate() {
  LDRMax = 0;
  LDRMin = 1023;
  durationMax = 0;
  durationMin = 100000;

  for (int i = 0; i <= 50; i++) {
    LDRreading = analogRead(lightPin); //read the value of the photoresistor
    //start measuring distance
    digitalWrite(trigPin, LOW);  //toggle the pin OFF so we're sure we'll have a clean reading
    delayMicroseconds(2); //short delay
    digitalWrite(trigPin, HIGH); //10 microseconds ON time, that's all the Ultrasound sensor needs
    delayMicroseconds(10);
    digitalWrite(trigPin, LOW);
    duration = pulseIn(echoPin, HIGH); //we read the duration of the sound wave bouncing back from the object

    // record the maximum sensor value for LDR
    if (LDRreading > LDRMax) {
      LDRMax = LDRreading;
    }
    // record the minimum sensor value for LDR
    if (LDRreading < LDRMin) {
      LDRMin = LDRreading;
    }
    // record the maximum sensor value for LDR
    if (duration > durationMax) {
      durationMax = duration;
    }
    // record the minimum sensor value for LDR
    if (duration < durationMin) {
      durationMin = duration;
    }
    delay(50); //short delay for faster response to light.
  }
  calibrated = true;
  Serial.print('c'); // c from calibrated

  //  Serial.print("max ldr:"); Serial.println(LDRMax);
  //  Serial.print("min ldr:"); Serial.println(LDRMin);
  //  Serial.print("max duration:"); Serial.println(durationMax);
  //  Serial.print("min duration:"); Serial.println(durationMin);
}


--------------------------------------------------------------------------------------------------------------------------

The other Arduino with the button and the LED looks like this:
Here is the set-up:




And finally the code:

//  Here we have the theme-song that will play
//  once the alarm goes off.
//  At the end you can see the needed methods.

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978

#define melodyPin 3
//Mario main theme melody
int melody[] = {
  NOTE_E7, NOTE_E7, 0, NOTE_E7,
  0, NOTE_C7, NOTE_E7, 0,
  NOTE_G7, 0, 0,  0,
  NOTE_G6, 0, 0, 0,

  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,

  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0,

  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,

  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0
};
//Mario main them tempo
int tempo[] = {
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
};
//Underworld melody
int underworld_melody[] = {
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0, NOTE_DS4, NOTE_CS4, NOTE_D4,
  NOTE_CS4, NOTE_DS4,
  NOTE_DS4, NOTE_GS3,
  NOTE_G3, NOTE_CS4,
  NOTE_C4, NOTE_FS4, NOTE_F4, NOTE_E3, NOTE_AS4, NOTE_A4,
  NOTE_GS4, NOTE_DS4, NOTE_B3,
  NOTE_AS3, NOTE_A3, NOTE_GS3,
  0, 0, 0
};
//Underwolrd tempo
int underworld_tempo[] = {
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  6, 18, 18, 18,
  6, 6,
  6, 6,
  6, 6,
  18, 18, 18, 18, 18, 18,
  10, 10, 10,
  10, 10, 10,
  3, 3, 3
};


// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2;     // the number of the pushbutton pin
const int ledPin =  13;      // the number of the LED pin

// variables will change:
int buttonState = 0;         // variable for reading the pushbutton status

int song = 0;

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);
  Serial.begin(9600);
  pinMode(3, OUTPUT);//buzzer
}

void loop() {
  while (Serial.available() > 0) {
    char c = Serial.read();
    if (c == 'c')
      digitalWrite(ledPin, HIGH);
    if (c == 'a') {
      //sing the tunes
      //sing(1);
      //sing(1);
      sing(2);
    }
  }
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed.
  // if it is, the buttonState is HIGH:
  if (buttonState == HIGH) {
    // turn LED on:
    Serial.print("start");
  }

}


void sing(int s) {
  // iterate over the notes of the melody:
  song = s;
  if (song == 2) {
    Serial.println(" 'Underworld Theme'");
    int size = sizeof(underworld_melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / underworld_tempo[thisNote];

      buzz(melodyPin, underworld_melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }

  } else {

    Serial.println(" 'Mario Theme'");
    int size = sizeof(melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / tempo[thisNote];

      buzz(melodyPin, melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }
  }
}

void buzz(int targetPin, long frequency, long length) {
  digitalWrite(13, HIGH);
  long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
  //// 1 second's worth of microseconds, divided by the frequency, then split in half since
  //// there are two phases to each cycle
  long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
  //// multiply frequency, which is really cycles per second, by the number of seconds to
  //// get the total number of cycles to produce
  for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
    digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
    delayMicroseconds(delayValue); // wait for the calculated delay value
    digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
    delayMicroseconds(delayValue); // wait again or the calculated delay value
  }
  digitalWrite(13, LOW);

}

--------------------------------------------------------------------------------------------------------------------------

Videolog:

Part 1;

Part 2:



No comments:

Post a Comment